绝缘材料二维氮化硼散热膜特点
二维氮化硼散热膜(SPA-TF40)是一种性能优异的均热散热材料。传统的人工石墨膜和石墨烯薄膜具有电磁屏蔽的特性,在5G通讯设备中的应用场景受限,特别是在分布式天线的5G手机中。二维氮化硼散热膜具有极低的介电系数和介电损耗,是一种理想的透电磁波散热材料,能被用于解决5G手机散热问题。同时,二维氮化硼散热膜是当前5G射频芯片、毫米波天线、无线充电、无线传输、IGBT、印刷线路板、AI、物联网等领域为有效的散热材料,具有不可替代性。二维氮化硼散热膜(SPA-TF40)电子元器件热管理中起到了十分关键的作用。绝缘材料二维氮化硼散热膜特点
二维氮化硼散热膜(SPA-TF40):5G时代巨大的数据流量对于通讯终端的芯片、天线等部件提出了更高的要求,器件功耗大幅提升的同时,引起了这些部位发热量的急剧增加。散热问题如不能很好解决,将严重制约通讯设备性能的提升,限制5G技术的普及与应用。氮化硼散热膜是当前5G射频芯片、毫米波天线领域 为有效的散热材料,具有不可替代性,但该材料长期被国外企业垄断,国内企业市场占有率严重不足。广东省晟鹏新材料有限公司利用自主研发的高质量二维氮化硼纳米片,成功制备了大面积、厚度可控(1-500微米)的二维氮化硼散热膜。该散热膜具有透电磁波、高导热、高柔性、高绝缘、低介电系数、低介电损耗等优异特性。本团队研发的二维氮化硼导热膜综合性远高于市面上产品,打破了我国在该领域“卡脖子”的现状。绝缘材料二维氮化硼散热膜特点二维氮化硼散热膜已经在vivo、oppo、华为、小米、比亚迪等公司开展技术验证。
二维氮化硼散热膜(SPA-TF40),是由氮化硼粉体组成,氮化硼是由氮原子和硼原子所构成的晶体。化学组成为43.6%的硼和56.4%的氮,具有四种不同的变体:六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纤锌矿氮化硼(WBN);氮化硼六方晶系结晶,**常见为石墨晶格,也有无定形变体,除了六方晶型以外,氮化硼还有其他晶型,包括:菱方氮化硼(r-BN)、立方氮化硼(c-BN)、纤锌矿型氮化硼(w-BN)。人们甚至还发现像石墨稀一样的二维氮化硼晶体。
二维氮化硼散热膜(SPA-TF40):对于手机及笔记本等电子产品而言,只依靠疯狂的堆高配置来看似厉害,如果细节没做好,用着用着一样是卡得飞起。配置高并不等于使用流畅!没有好的导热散热机制,无法保证电子产品的持续、稳定工作。尤其对于手游玩家来说,想要保持强战斗力,手机高效散热尤其重要,不然三分钟是大神,三分钟后是菜鸡。当前,智能手机主流的散热器件主要包括石墨散热膜、石墨烯散热膜、热管和均热板等,并根据不同的配置搭配上不同的组合。以游戏手机iQOO9Pro为例,据称这款手机搭载了十八层叠瀑VC立体散热系统,配备了大面积的VC均热板和石墨散热膜,在正面屏幕之下,它又叠加了薄散热膜,这样做的好处在于,即使手机处于亮屏状态下,也能够很好的压制屏幕表面温度。二维氮化硼散热膜(SPA-TF40)为5G智能手机向更高水平发展,提供散热材料支撑。
氮化硼散热膜的优异性能使得其电电子设备中得到了广的应用。下面将介绍氮化硼散热膜在电子设备中的应用情况。 1、LED封装 LED是一种半导体器件,其工作时会产生大量的热量。为了保证LED的正常工作,需要将产生的热量及时散热。目前,氮化硼散热膜已经被广应用于LED封装中,可以有效地提高LED的散热效率,延长LED的寿命,并提高LED的发光效率。 2、CPU散热 CPU是计算机中的中心部件,其工作时同样会产生大量的热量。为了保证CPU的正常工作,需要将产生的热量及时散热。目前,氮化硼散热膜已经被广应用于CPU散热中,可以有效地提高CPU的散热效率,延长CPU的寿命,并提高计算机的性能。二维氮化硼散热膜具有透电磁波、高导热、高柔性、高绝缘、低介电常数、低介电损耗等特性。挑选二维氮化硼散热膜稳定性
二维氮化硼散热膜(SPA-TF40) 应用于无线充电场景。绝缘材料二维氮化硼散热膜特点
氮化硼散热膜材料在部分应用场景上可取代传统的石墨散热膜,在保证一定的散热能力的基础上,二维氮化硼材料所具有高绝缘性、低介电损耗、低介电系数、透波和白色外观可以很好地解决石墨散热膜在实际应用中所存在的许多痛点,特别是在5G通讯设备、射频器件、高速通讯装置等相关电子元件的散热场景。此外二维氮化硼复合散热膜的出现可以更好地改变现有电子设备的设计思路,有助于电子设备的小型化和紧凑化发展。除了完美匹配5g通讯的需求外,该散热膜在柔性印刷电路板、绝缘膜、柔性电子封装等领域也有着潜在的发展空间和应用价值。绝缘材料二维氮化硼散热膜特点
上一篇: 选择二维氮化硼散热膜发展现状
下一篇: 使用二维氮化硼散热膜大概多少钱